Lipomyelomeningocele for the Urologist: should we view it the same as myelomeningocele?

Grace Yoshiba BS
Chris Halline, BA
Earl Y. Cheng MD
Theresa A. Meyer RN
Ilina Rosoklija MPH
Robin Bowman MD
Elizabeth B. Yerkes MD
March 17, 2017

Lipomyelomeningocele for the Urologist: should we view it the same as myelomeningocele?

Elizabeth Yerkes, MD
Attending Physician, Ann & Robert H Lurie Children’s Hospital
Associate Professor of Urology, Northwestern University Feinberg School of Medicine

• Do not intend to discuss commercial products or services.
• Do not intend to discuss non-FDA approved uses of products/providers of services.
Team Biases re: LMM

1. Early untethering ↓ risk of neurologic decline

2. Spina Bifida pts deserve long-term team F/U

3. Certain lipoma types memorable bad actors
Questions to consider:

• Do we need to treat all LMM like MM?

• How can we best prepare LMM families?
Our Objectives:

1. To identify high risk patient factors
Our Objectives:

1. To identify high risk patient factors

2. To better counsel regarding long term outlook
Our Objectives:

1. To identify high risk patient factors

2. To better counsel regarding long term outlook
 • Defining urologic outcomes in the setting of early TCR for lipomyelomeningocele (LMM)
1. To identify high risk patient factors

2. To better counsel regarding long term outlook
 • Defining urologic outcomes in the setting of early TCR for lipomyelomeningocele (LMM)

Our Objectives:

Predictors of continence, with or without CIC

Likelihood / Timing of CIC
Patient Selection

- 143 patients with TCR for LMM, 1995-2010
 - 2 neurosurgeons

- Longitudinal multidisciplinary clinic care >1 year

Exclusions
- Concomitant ARM/ GU anomaly
- Prior TCR

Inclusions
- Toilet trained / Continent OR Age ≥6 y last visit
Patient Selection

Starting Cohort
143 Unique Patients
1995 – 2010
(2 SB team neurosurgeons)

10 < 1 year follow up

11 Anorectal malformation or GU anomaly

60 previous TCR

5 <6yo/not toilet trained, 1 incontinent stoma

Final Cohort
56 Patients, ≥ 1 year follow up
Clinical Factors

- Demographics
- Clinical Presentation
- Age at TCR
Clinical Factors

- Demographics
- Clinical Presentation
- Age at TCR

- Anatomic factors:
 - lipoma type
 - complete vs. incomplete untethering
Study Group

• 56 patients (27 M / 29 F)

• Median age at TCR: 4.4 month (1.0-224)

• Presentation:
 • Asymptomatic (cutaneous, screening): 68%
 • Urologic symptoms: 9% (5/56)
Urologic Status

- Median length of urologic follow up 10.7 years (1.3-19.1)
- 86% (48/56) are continent with or w/o CIC
Urologic Status

56 Patients

- 8 (14%) **Incontinent** at latest follow-up
 - 5 (9%) **without CIC**
 - 3 (5%) **with CIC**

- 48 (86%) ** Continent** at latest follow-up
 - 38 (68%) **without CIC**
 - 10 (18%) **with CIC**
Urologic Status

56 Patients

- 8 (14%) Incontinent at latest follow-up
 - 5 (9%) without CIC
 - 3 (5%) with CIC

- 48 (86%) Continent at latest follow-up
 - 38 (68%) without CIC
 - 10 (18%) with CIC
Urologic Status

• Unique population ➔ 91% asymptomatic urologically
Urologic Status

• Unique population ➔ 91% asymptomatic urologically

• Long-term CIC rate = 23 %
Urologic Status

• Unique population ➔ 91% asymptomatic urologically

• Overall Long-term = 23 % CIC
 • Asymptomatic = 13% CIC
 • Symptomatic (uro/ortho) = 44% CIC
Urologic Status

• CIC started at median age 7.6 yr (1.6-17.4)
 • Urodynamic/voiding change (10), desire for continence (4)
Urologic Outcome

• Urologic presentation in 5 patients (9%)
 • TCR median age 108 months
 • (4.4 months in overall cohort)
 • All continent at latest FU, but 4/5 (80%) on CIC
 • All had dimple or cutaneous lipoma---? opportunity
Additional Surgical Needs

- Re-tethering occurred in 21%

- No patient required BNR or augmentation
Predictive Factors?

<table>
<thead>
<tr>
<th>Continence at most recent visit</th>
<th>p- value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continent</td>
<td>Incontinent</td>
</tr>
<tr>
<td>Total (n=56)</td>
<td>48 (86%)</td>
</tr>
<tr>
<td>Male</td>
<td>23 (85%)</td>
</tr>
<tr>
<td>Female</td>
<td>25 (86%)</td>
</tr>
<tr>
<td>Median age at TCR (months)</td>
<td>4.9</td>
</tr>
<tr>
<td>Presenting Symptoms</td>
<td></td>
</tr>
<tr>
<td>Asymptomatic (cutaneous lesion only, incidental)</td>
<td>33 (87%)</td>
</tr>
<tr>
<td>Symptomatic (urologic, ortho)</td>
<td>15 (83%)</td>
</tr>
<tr>
<td>Untethering</td>
<td></td>
</tr>
<tr>
<td>Complete</td>
<td>36 (86%)</td>
</tr>
<tr>
<td>Partial</td>
<td>12 (86%)</td>
</tr>
<tr>
<td>Lipoma type</td>
<td></td>
</tr>
<tr>
<td>Dorsal</td>
<td>21 (84%)</td>
</tr>
<tr>
<td>Distal</td>
<td>14 (93%)</td>
</tr>
<tr>
<td>Transitional</td>
<td>12 (80%)</td>
</tr>
<tr>
<td>Chaotic</td>
<td>1 (100%)</td>
</tr>
<tr>
<td>Conus Position</td>
<td></td>
</tr>
<tr>
<td>Low lumbar (L4, L5)</td>
<td>18 (86%)</td>
</tr>
<tr>
<td>Lumbosacral</td>
<td>3 (75%)</td>
</tr>
<tr>
<td>Sacral</td>
<td>27 (87%)</td>
</tr>
</tbody>
</table>
Predictive Factors?

<table>
<thead>
<tr>
<th></th>
<th>Continent (n=56)</th>
<th>Incontinent (n=8)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>48 (86%)</td>
<td>8 (14%)</td>
<td></td>
</tr>
<tr>
<td>Presenting Symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>33 (87%)</td>
<td>5 (13%)</td>
<td>0.703</td>
</tr>
<tr>
<td>Symptomatic</td>
<td>15 (83%)</td>
<td>3 (17%)</td>
<td></td>
</tr>
<tr>
<td>Untethering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete</td>
<td>36 (86%)</td>
<td>6 (14%)</td>
<td>1.0</td>
</tr>
<tr>
<td>Partial</td>
<td>12 (88%)</td>
<td>2 (14%)</td>
<td></td>
</tr>
<tr>
<td>Lipoma type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorsal</td>
<td>21 (84%)</td>
<td>4 (16%)</td>
<td>0.747</td>
</tr>
<tr>
<td>Distal</td>
<td>14 (93%)</td>
<td>1 (7%)</td>
<td></td>
</tr>
<tr>
<td>Transitional</td>
<td>12 (80%)</td>
<td>3 (20%)</td>
<td></td>
</tr>
<tr>
<td>Chaotic</td>
<td>1 (100%)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Conus Position</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low lumbar (L4, L5)</td>
<td>18 (86%)</td>
<td>3 (14%)</td>
<td>0.708</td>
</tr>
<tr>
<td>Lumbosacral</td>
<td>3 (75%)</td>
<td>1 (25%)</td>
<td></td>
</tr>
<tr>
<td>Sacral</td>
<td>27 (87%)</td>
<td>4 (13%)</td>
<td></td>
</tr>
</tbody>
</table>
Predictive Factors for CIC?
Predictive Factors for CIC?

- CIC required in 44% of any symptomatic, 80% of urologically symptomatic
Predictive Factors for CIC?

- CIC required in 44% of all symptomatic, 80% of urologically symptomatic

Anatomic:

- CIC required in 57% of Partial untether
 - (12% Complete)
- CIC required in 47% of Transitional lipoma
 - (8% Dorsal, 27% Distal)
Conclusions

• Continence (with or without CIC) is excellent = 86%

• CIC is required in 23% over long-term, by 3rd grade in majority but as late as 17y

• Presentation with urologic symptoms ➔ CIC
Conclusions

• No anatomic, surgical or functional variable predictive of **continence**
• Transitional lipoma / Partial untether increases need for **CIC**
LMM ≠ MM
LMM ≠ MM
Still cannot predict individual outcomes.
Treat them the same.
Limitations and Next Steps
Limitations and Next Steps

• Early TCR in young largely asymptomatic cohort
Limitations and Next Steps

• Early TCR in young largely asymptomatic cohort

• Excellent continence and low CIC may not be enjoyed by all presentations
Limitations and Next Steps

• Early TCR in young largely asymptomatic cohort

• Excellent continence and low CIC may not be enjoyed by all presentations

• Examining continence and CIC in NSBPR LMM