Fasting Serum Blood Measures of Bone and Lipid Metabolism in Children with Myelomeningocele for Early Detection of Cardiovascular and Bone Fragility Risk Factors

Alexander Van Speybroeck, Nicole Mueske, Steven Mittelman, Richard Kremer, Deirdre Ryan, Tishya Wren
Fasting Serum Blood Measures of Bone and Lipid Metabolism in Children with Myelomeningocele for Early Detection of Cardiovascular and Bone Fragility Risk Factors

- Alexander Van Speybroeck, MD, MPH
 - Medical Director, Spina Bifida Program, Children’s Hospital Los Angeles, Los Angeles, California
 - Assistant Professor, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
- Does not intend to discuss commercial products or services.
- Does not intend to discuss non-FDA approved uses of products/providers of services.
- Support provided by NIH-NICHD Grant # 5R01HD059826.
- Authors have no disclosures.
Background

• Obesity in the general pediatric population:
 – Increased over the past 2 decades.
 – At least 80% of overweight youth are overweight/obese as adults.

• Obesity is a chief risk factor for:
 – Metabolic syndrome, type II diabetes, cardiovascular disease, cancer, sleep apnea
• Higher incidence of obesity in children and adolescents with myelomeningocele (MM).
• Youth with MM often experience prolonged periods of inactivity due to:
 – Surgeries, pressure sores, UTIs, braces/assistive devices
• Youth with MM have an increased risk of abnormal lipid profiles, metabolic profiles, bone metabolism markers and vitamin D levels.
• Early detection for prompt intervention, greater possibility of prevention and better treatment outcomes is crucial.
Purpose

• Assess all serum levels within a single population.
• Investigate differences among varying degrees of disease severity.
Methods

• Population
 – Aged 6-13 years
 – No medication affecting growth/development
 – No chronic conditions (other than MM/hydrocephalus for patient group)
 • 28 children with MM
 – 8 sacral, 5 low lumbar, 15 mid lumbar and above (IMSG)
 • 58 without MM

• Clinical measures
 – Height, weight, manual muscle testing completed by a PT
 – Blood pressure (within 6 months of study visit) accessed from medical record retrospectively for patient group
 – Percent body fat and trunk fat from DXA
Methods

• Serum levels
 – Fasting (>8 hours) blood sample
 – Lipid panel: cholesterol, triglycerides (TG), high-density lipoproteins (HDL), low-density lipoproteins (LDL)
 – Insulin resistance calculated from insulin and glucose levels using the homeostatic model assessment of insulin resistance (HOMA-IR)
 – Others: leptin, aspartate aminotransferase (AST), Alanine transaminase (ALT), alkaline phosphatase, albumin, creatinine, calcium, adjusted calcium, phosphate, intact parathyroid hormone (PTH), total 25-hydroxyvitamin D (25 OHD)
• **Metabolic syndrome if 3 or more were present:**
 - High blood pressure: systolic or diastolic ≥90th percentile for age, height, sex
 - Excessive trunk adiposity: ≥30% for males, ≥35% for females
 - Insulin resistance/glucose intolerance: glucose ≥100mg/dL
 - High levels of TG: ≥100mg/dL
 - Low levels of HDL: <45mg/dL for males, <50mg/dL for females
Methods

• Vitamin D status
 – Sufficient: ≥30ng/ml
 – Insufficient: 20-29ng/ml
 – Deficient: <20ng/ml

• Obesity categorized based on BMI percentile
 – ≥95th percentile
• **Statistical analyses:**

 – Participant characteristics and serum levels - MM group vs. controls

 • Student’s t-tests (normally distributed)

 • Mann-Whitney rank sum (not normally distributed)

 – Generalized linear model including trunk fat as a covariate

 – Differences among neurosegmental levels and controls

 • ANOVA, post-hoc tests (normally distributed)

 • Kruskal-Wallis, post-hoc tests (not normally distributed)

 • Bonferroni adjustment to p-values for multiple comparisons.
Results - Participant Characteristics

- Control and MM groups not different (p≤0.46) in:
 - Sex distribution
 - Ethnic distribution
 - Age
 - Tanner stage
 - Body mass
 - BMI
 - % classified as obese
 - % trunk fat

- MM group had shorter stature, higher total % body fat, watched more TV (p≥0.06).
Results - Serum Levels, MM vs. Controls

• Lipid panel
 – MM had:
 • Lower HDL (p=0.03); similar cholesterol, TG, LDL (p=0.26)

• Metabolic panel
 – MM had:
 • Higher insulin (p=0.10), HOMA-IR (p=0.12), and leptin (p=0.12)

• Bone metabolism
 – MM had:
 • Lower calcium, PTH, vitamin D
 • Trend toward higher phosphate

• Others
 – MM had:
 • Lower AST, alkaline phosphatase, albumin and creatinine (p≤0.03)
 • Similar ALT (p=0.91)
Results - Serum Levels, MM vs. Controls

• PTH and 25OHD were negatively correlated in both control and MM groups.
 – MM: r=-0.43, p=0.02
 – Control: r=-0.38, p=0.003
Results - Serum Levels, MM vs. Controls

• After including percent trunk fat as a covariate group differences were no longer seen in:
 – HDL (p=0.17)
 – Insulin (p=0.57)
 – HOMA-IR (p=0.72)
 – Leptin (p>0.99)
 – AST (p=0.21)

• Group differences persisted in:
 – Alkaline phosphatase (p=0.002)
 – Albumin (p=0.07)
 – Creatinine (p<0.001)
 – Calcium (p=0.004), adjusted calcium (p=0.04)
 – PTH (p=0.008)
 – 25 OHD (p=0.009)
Results - Vitamin D, MM vs. Controls

- **MM**
 - Sufficient: 12
 - Insufficient: 14
 - Deficient: 2

- **Controls**
 - Sufficient: 13
 - Insufficient: 35
 - Deficient: 10

* indicates deficiency.
Results - Participant Characteristics, Neurosegmental Levels

• No differences in:
 – Sex or ethnic distribution
 – Age
 – Hours of TV watched
 – Height, body mass, BMI, BMI percentile

• Mid lumbar group compared to controls
 – Lower height for age
 – More total body fat
 – More trunk fat
Results - Serum Levels, Neurosegmental Levels

• Lipid panel
 – HDL tended to decrease with increasing neurosegmental level while TG tended to increase
 – No differences reached significance
• Mid lumbar group compared to controls
 – Higher leptin, phosphate
 – Lower AST, alkaline phosphatase, creatinine, unadjusted calcium, PTH, and vitamin D
• Low lumbar group compared to controls
 – Lower creatinine, calcium (adjusted and unadjusted), PTH
• Sacral group not observably different than controls
• Presence of metabolic syndrome components:
 – High blood pressure: systolic or diastolic ≥90th percentile for age, height, sex
 • 29% of MM
 – Excessive trunk adiposity: ≥30% for males, ≥35% for females
 • 43% of MM
 • 31% of control
 – Insulin resistance/glucose intolerance: glucose ≥100mg/dL
 • 0% of MM
 • 4% of control
 – High levels of TG: ≥100mg/dL
 • 25% of MM
 • 19% of control
 – Low levels of HDL: <45mg/dL for males, <50mg/dL for females
 • 25% of MM
 • 17% of control
Results - Metabolic Syndrome, Neurosegmental Levels

• Presence of metabolic syndrome components:
 – MM group only
 • Those classified as having metabolic syndrome:
 – All were obese (truncal adiposity)
 – All had hypertension combined with high TG and low HDL

Number of Metabolic Syndrome Risk Factors

- 9
- 6
- 4
- 3 or more
- 2
- 1
- 0
• Children/adolescents with MM have elevated and/or adverse serum levels.
 – Some differences are related to increased adiposity.
 – Those with sacral level involvement are similar to controls.
 – Those with lumbar level involvement had abnormalities in the lipid profile, bone metabolism markers and metabolic syndrome markers.
Discussion

• 68% of the youth with MM had one or more abnormality, compared to 53% of the control group.

• Youth with MM may have an increased risk of cardiovascular disease and osteoporosis.
 – These conditions are largely preventable/treatable; early detection/intervention is likely to result in better outcomes.

• No subclinical renal dysfunction was detected.
 – Utility of routine creatinine monitoring is not supporting by study findings.

• 93% of MM participants were vitamin D insufficient or deficient, control group had a rate of 78%.

• 15% of MM group were classified as having metabolic syndrome.
Discussion

- Elevated CVD and metabolic syndrome risk factors, and possibly lower vitamin D levels, in the MM group are primarily associated with greater obesity.
- Musculoskeletal risk factors may be reflective of MM.
- Abnormalities likely exacerbated with increased disease severity.
Future Directions

• Dysregulated parathyroid function
 – Low PTH and alkaline phosphatase despite low vitamin D
• What diet and exercise interventions are most effective?
• What about older teens and adults with MM?
THANK YOU!!!

QUESTIONS?