Risk Factors for Advanced Skeletal Maturity in Children and Adolescents with Myelomeningocele

Ronald Roiz, Nicole Mueske, Alexander Van Speybroeck, Vicente Gilsanz, Deirdre Ryan, Tishya Wren
Risk Factors for Advanced Skeletal Maturity in Children and Adolescents with Myelomeningocele

- **Alexander Van Speybroeck, MD, MPH**
 - Medical Director, Spina Bifida Program, Children’s Hospital Los Angeles, Los Angeles, California
 - Assistant Professor, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California

- Does not intend to discuss commercial products or services.
- Does not intend to discuss non-FDA approved uses of products/providers of services.
- Support provided by NIH-NICHD Grant # 5R01HD059826.
- Authors have no disclosures.
Background

• Skeletal development is affected in patients with myelomeningocele (MM).
 – Decreased bone density
 – Atypical skeletal maturity

• Likely multifactorial; possibly related to:
 – Mechanical loading
 – Nutrition
 – Bone metabolism
 – Endocrine system
Background

- Advanced skeletal maturity has been observed in the spina bifida population.
 - Hydrocephalus
 - Diminished bone age (Feeley 2003)
 - No association (Kalen 1994)
 - Neurosegmental level
 - No association
 - Sex
 - No association
• To assess skeletal maturity, as measured by bone age, in children and adolescents with myelomeningocele.
• Examine the effects of sex, BMI, shunt status, and functional level.
Methods - Population

• 92 children with MM
 – 52 males; average age 10.1 years, range 6.0-15.8 years
 • 10 sacral, 6 low lumbar, 28 mid lumbar, 8 high lumbar and above
 – 40 females; average age 9.9 years, 6.2-16.9 years
 • 12 sacral, 7 low lumbar, 17 mid lumbar, 4 high lumbar and above
Methods - Clinical Measures

- Height, weight, manual muscle testing completed by a PT.
- Tanner Stage of Sexual Maturity completed by a pediatric endocrinologist.
Methods - Bone Age

- X-rays of left wrist/hand
- All x-rays read by 1 reviewer
 - Greulich and Pyle method
 - Blinded to participants’ chronological age
Methods - Statistics

• Paired t-tests to identify differences in bone and chronological age.
• Spearman’s rho to analyze factors influencing bone age, namely neurosegmental level, FMS data, Tanner Stage.
• Multiple linear regression to determine relative effect of Tanner Stage, BMI, sex and shunt presence/absence.
Results

- Bone age is significantly advanced for both males and females.
 - Males mean difference: \(-0.64 \pm 1.6\); range: \(-3.93\) to \(2.89\)
 - Females mean difference: \(-0.82 \pm 1.61\); range: \(-4.39\) to \(2.28\)
Results - Multivariate Analysis

- Bone age was initially delayed, but became advanced after 9.5 years for males and 9.1 years for females.
• No significant effects of neurosegmental level or shunt status were found.
• BMI was correlated with advanced bone age.
 – Males: $r^2=-0.59$; $p<0.001$
 – Females: $r^2=-0.55$, $p<0.0001$
Discussion

• Advanced bone age as great as 4.4 years was observed.
• In this population, abnormal bone age was:
 – *Not associated* with ambulation or shunt presence.
 – *Positively associated* with BMI, Tanner Stage.
• Skeletal development is altered in children and adolescents with MM.

• Advanced bone age was seen in both males and females after about 9 years of age.
 – May be related to onset of puberty

• Skeletal maturity determination is important for timing of orthopaedic interventions common in this population.

• A better understanding of bone age in children with MM may aid in surgical planning.
Future Directions

• Implications for adults with MM - advanced bone age as a youth, increased fractures, osteoporosis risk as adults?
THANK YOU!!!

QUESTIONS?