March 18, 2017
Developing a Systematic Neurodevelopmental Monitoring Program for Infant and Toddlers with Spina Bifida: Why Is It Important?

Jennifer Turek Queally, PhD
Assistant Professor of Psychology in the Department of Psychiatry, Harvard Medical School
Attending Neuropsychologist; Department of Psychiatry, Boston Children’s Hospital

Mohammad Alkhawaldeh, BSN, MSN/NI, PhD(c)
Research Coordinator, Center for Spina Bifida and Spinal Cord Conditions, Boston Children’s Hospital

Carlos Estrada, MD
Assistant Professor of Surgery (Urology), Harvard Medical School
Director, Center for Spina Bifida and Spinal Cord Conditions, Boston Children’s Hospital

• Does not intend to discuss commercial products or services.
• Does not intend to discuss non-FDA approved uses of products/providers of services.
Developing a Systematic Neurodevelopmental Monitoring Program for Infant and Toddlers with Spina Bifida: Why Is It Important?

Jennifer Turek Queally, PhD
Mohammad Alkhawaldeh, BSN, MSN/NI, PhD(c)
Carlos Estrada, MD

Boston Children’s Hospital
Case example

Patient 0
History

- Adam was born to a G2, P0, 35-year-old woman via in vitro fertilization
- Both parents are physicians
- At 18 weeks gestation L4 myelo + hydro was diagnosed
- Parents went to CHOP for MOMS trial- surgery
- Surgery took place at 22 weeks
- Delivery took place by c-section at 35 weeks after mild dehiscence of the uterine incision site
- Apgars were 9 at one and 9 at five minutes and he did generally well at the time of birth. He weighed 2.75 kg at birth (6.1 pounds)
- Lives in an affluent waterfront town in Massachusetts
MRIs at birth: absent septum pellucidum, mild residual stigmata of Chiari II malformation with a small fourth ventricle, mild reduction of posterior fossa CSF space, and minimal beaking of the tectum; no hydrocephalus.

These are from when we saw him later on… (10/08)
<table>
<thead>
<tr>
<th></th>
<th>05/07</th>
<th>11/07</th>
<th>1/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in months</td>
<td>10</td>
<td>16</td>
<td>28</td>
</tr>
<tr>
<td>Composite Scores (mean100±15) (age equivalent)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive Scale</td>
<td>75 (8:0)</td>
<td>90 (14:0)</td>
<td>105 (30:0)</td>
</tr>
<tr>
<td>Language Scale</td>
<td>83</td>
<td>83</td>
<td>106</td>
</tr>
<tr>
<td>Motor Scale</td>
<td>70</td>
<td>76</td>
<td>79</td>
</tr>
<tr>
<td>Subscales (mean10±3) (age equivalent)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receptive Communication</td>
<td>8 (9:0)</td>
<td>8 (14:0)</td>
<td>11 (35:0)</td>
</tr>
<tr>
<td>Expressive Communication</td>
<td>6 (7:0)</td>
<td>6 (11:0)</td>
<td>11 (31:0)</td>
</tr>
<tr>
<td>Fine Motor Skills</td>
<td>9 (10:0)</td>
<td>9 (15:0)</td>
<td>8 (26:0)</td>
</tr>
<tr>
<td>Gross Motor Skills</td>
<td>1 (6:0)</td>
<td>2 (10:0)</td>
<td>5 (17:0)</td>
</tr>
</tbody>
</table>
Follow up

• He was referred to Early Intervention, and received PT, OT, and developmental supports.
• Given his progress and lack of symptoms of increased intracranial pressure, he was not shunted.
• Now, he is excelling in regular education classes, with a verbal IQ of over 120.
Management of hydrocephalus
Dr. Warf and the ETV

• In 2000, Dr. Warf moved to Uganda to work with CURE international as a neurosurgeon.
• Saw many children with hydrocephalus, many infectious.
• It was challenging to treat hydrocephalus with shunts, as patients were not able to return in time if there was an issue.
• Dr. Warf developed the procedure to treat the hydrocephalus with little need for ongoing care.
• 2012 MacArthur Foundation Fellow; although he returned to the US, his work is carried on through the Cure Hydrocephalus (CH) Surgeon Training Program.
Endoscopic third ventriculostomy

• Endoscopic third ventriculostomy reestablishes the flow of cerebral spinal fluid out of the ventricles through surgical intervention
• The choroid plexus cauterization decreases the amount of fluid that is produced, increasing the success of the procedure
• Failures are typically observed in close proximity to the initial procedure, we don’t tend to see it later in life (so far)
• Eliminates the need for a shunt
• Does not work for all patients; we have had several patients have an ETV and still require a shunt
General routine

• Infants who are followed in the Boston Children’s Hospital Spina Bifida Center are closely followed for the development of hydrocephalus.

• They are referred for neurodevelopmental assessments as a part of this monitoring.

• I meet with the families in clinic to establish a relationship.

• The families return around every 6 months in order to follow up, if not more frequently.

• Evaluations are scheduled after imaging, on the same day that they are seeing a neurosurgeon team member for follow up.
Neurodevelopmental Screening Program
Assessments

• Typical evaluations include:
 • 6 months: Bayley:3; BSID-3 Social Emotional/Adaptive; Vineland:II (transitioning to Vineland:3)
 • 12 months: same as 6 months
 • 18 months: same with CBCL, BASC-II (transitioning to BASC-3)
 • 24 months: same as 18 months

• Assessments are scheduled more frequently when there are concerns about developmental progression, regression, or neurological changes.

• A developmental survey and medical regimen questionnaire are also completed
Findings

- Information from the results of the evaluations helps to prioritize interventions and is provided to:
 - families
 - developmental pediatricians
 - neurosurgical team
 - community based early intervention and outpatient therapists
Interview

• We ask a lot of questions about:
 • developing routines, such as sleeping, eating, playing, and therapies
 • their adjustment as parents and their support networks
 • bonding with their children, what types of activities the child enjoys, and what the family does together
 • the child’s bonding with siblings and pets; general adjustment of the family members
What we have found
Current numbers

• To date, we have had 69 children participate in the program, with a range of 1 to 6 evaluations each
• There has been a total of 168 evaluations
• For data analysis purposes, the patients are separated into 4 categories (% for the current data)
 • No ETV/shunt (42.4%)
 • ETV (30.3%)
 • Shunt (10.6%)
 • ETV and shunt (16.7%)
BSID:3 Domains (mean 100±15)

<table>
<thead>
<tr>
<th>Domain</th>
<th>No shunt/ETV (n=28)</th>
<th>ETV only (n=19)</th>
<th>Shunt only (n=7)</th>
<th>ETV & Shunt (n=11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive</td>
<td>96.7</td>
<td>87.2</td>
<td>82.1</td>
<td>74.6</td>
</tr>
<tr>
<td>Language</td>
<td>90.2</td>
<td>90.3</td>
<td>83.3</td>
<td>78.8</td>
</tr>
<tr>
<td>Motor</td>
<td>84.5</td>
<td>75.2</td>
<td>67.4</td>
<td>59.9</td>
</tr>
<tr>
<td>Social-Emotional (parent report)</td>
<td>101.8</td>
<td>100.7</td>
<td>89.2</td>
<td>98.2</td>
</tr>
<tr>
<td>Adaptive (parent report)</td>
<td>92.1</td>
<td>80.2</td>
<td>81.5</td>
<td>82.6</td>
</tr>
<tr>
<td>BSID:3 subscales (mean 10±3)</td>
<td>No shunt/ETV (n=26)</td>
<td>ETV only (n=18)</td>
<td>Shunt only (n=7)</td>
<td>ETV & Shunt (n=10)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Language</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receptive Communication</td>
<td>8.6</td>
<td>8.7</td>
<td>8.1</td>
<td>6.6</td>
</tr>
<tr>
<td>Expressive Communication</td>
<td>8.3</td>
<td>7.8</td>
<td>6.0</td>
<td>6.1</td>
</tr>
<tr>
<td>Motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine Motor</td>
<td>9.4</td>
<td>7.9</td>
<td>6.9</td>
<td>5.3</td>
</tr>
<tr>
<td>Gross Motor</td>
<td>5.7</td>
<td>3.6</td>
<td>2.2</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>No shunt/ETV (n=26)</td>
<td>ETV only (n=18)</td>
<td>Shunt only (n=7)</td>
<td>ETV & Shunt (n=10)</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Adaptive Behavior Composite</td>
<td>90.9</td>
<td>87.7</td>
<td>86.4</td>
<td>83.8</td>
</tr>
<tr>
<td>Communication</td>
<td>96.4</td>
<td>93.1</td>
<td>96.1</td>
<td>90.9</td>
</tr>
<tr>
<td>Daily Living Skills</td>
<td>95.1</td>
<td>93.8</td>
<td>88.6</td>
<td>91.9</td>
</tr>
<tr>
<td>Socialization</td>
<td>95.3</td>
<td>91.8</td>
<td>93.0</td>
<td>95.5</td>
</tr>
<tr>
<td>Motor Skills</td>
<td>84.1</td>
<td>78.7</td>
<td>77.9</td>
<td>68.8</td>
</tr>
</tbody>
</table>
Benefits to these visits

• It allows families to connect with a provider about their child’s abilities, rather than medical needs
• It helps to establish the role of clinicians as advocates
• Provides information to help families understand that their child will do many of the same behaviors and developmental milestones as other children
• Allows the clinical team to understand family dynamics, parenting styles, and concerns
Other topics of interest

• We discuss a variety of topics that are essential for early self regulation skills especially sleep and wake cycles, napping, and establishment of feeding and playing routines
• Latex precautions, particularly around toys and play groups
• Feeding and its relation to oromotor skill development, food allergies, and managing weight gain and early constipation
• The importance of reading to children to support language development
• Encouraging independent initiation in the absence of motor movement
Language

- We have found a number of children with slowly developing language skills
- Given restrictions in motor skills, we can find significant challenges in their ability to initiate on the environment
- We have begun to recommend the use of sign language for children early on
- We have found that language acquisition in ASL can progress rapidly, and that children are able to transition back when verbal speech is a possibility
Summary

• Our neurodevelopmental monitoring program has provided a vehicle for parents to focus on well child development and proactively working with our medical team to support developmental progress.

• We are hoping that early detection of issues (e.g., slow language acquisition) in early development can help to maintain expected skill progression when provided with rapid intervention through outpatient services.